# IFRS 17 & Solvency II Workshop Quantitative aspects of Solvency II

Carlos Arocha, FSA

CNseg—Confederação Nacional das Empresas de Seguros São Paulo, 15—17 July 2019





# **Presentation Disclaimer**

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the participants individually and, unless expressly stated to the contrary, are not the opinion or position of the Society of Actuaries, its cosponsors or its committees. The Society of Actuaries does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented.



# Agenda

| Monday, | 15 July |  |
|---------|---------|--|
|---------|---------|--|

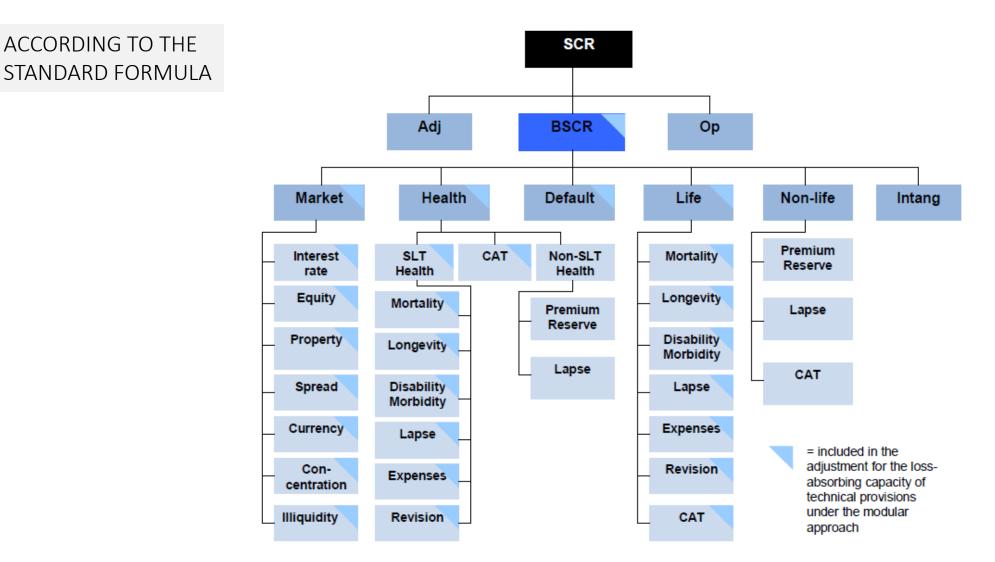
- Recap of IFRS 17 Background
- General Measurement Model
- Reinsurance Held and Contracts Acquired
- Implementing IFRS 17

| Tuesday, | 16 July |
|----------|---------|
|----------|---------|

- Measurement of direct participation contracts
- Illustrative examples of the Premium Allocation Approach
- Presentation of IFRS 17 Results
- Data management and calculation engines
- Background and scope of Solvency II
- Quantitative aspects of Solvency II

#### Wednesday 17 July

- Quantitative aspects of Solvency II (cont'd)
- Governance under Solvency II
- The Risk Management & Reporting Processes



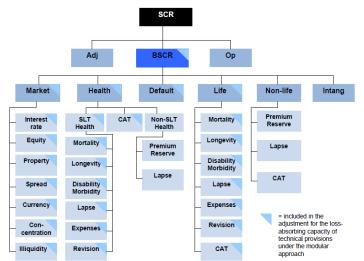

# **The Standard Formula**





# Overall structure of the solvency capital requirement






# Modules and sub-modules

- For each module and sub-module, the specifications are split into the following:
  - description: scope of module and definition of the relevant sub-risk
  - input: list of the input data requirements
  - output: output data generated by the module
  - calculation: how the output is derived from the input
  - simplification: how the calculation can be simplified under certain conditions
- There are three mutually exclusive underwriting modules:
  - life

OCIETY OF

- health
- non-life



6

# **Overall SCR calculation**

| Description | The SCR is the end result of the standard formula calculation                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input       | <ul> <li>BSCR – basic solvency capital requirement</li> <li>SCR<sub>op</sub> – capital requirement for operational risk</li> <li>Adj – adjustment for the risk absorbing effect of technical provisions and deferred taxes</li> </ul> |
| Output      | This module delivers the overall standard formula capital requirement                                                                                                                                                                 |
| Calculation | $SCR = BSCR + Adj + SCR_{op}$                                                                                                                                                                                                         |



# **BSCR** calculation

| Description | The <i>BSCR</i> is the solvency capital requirement before any adjustments, combiing capital requirements for six major risk categories                                                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input       | SCR<br>mkt-capital requirement for market riskSCR<br>def-capital requirement for counterparty default riskSCR<br>life-capital requirement for life underwriting riskSCR<br>nl-capital requirement for non-life underwriting riskSCR<br>health<br>SCR<br>intangibles-capital requirement for health underwriting risk |
| Output      | This module delivers <i>BSCR</i> , the basic solvency capital requirement                                                                                                                                                                                                                                            |
| Calculation | $BSCR = \sqrt{\sum_{n} Corr_{ij} \times SCR_i \times SCR_j} + SCR_{intangibles}$                                                                                                                                                                                                                                     |
|             | where $Corr_{ij}$ are the entries of the correlation matrix, and $SCR_i$ , $SCR_j$ are the capital requirements for the individual risks according to the rows and columns of the correlation matrix.                                                                                                                |

the individual risks according to the rows and columns of the correlation matrix



# Correlation matrix for the BSCR calculation

• The standard formula assumes linear correlations among the risks as follows:

| i, j     | Market | Default | Life | Health | Non-life |
|----------|--------|---------|------|--------|----------|
| Market   | 1.00   |         |      |        |          |
| Default  | 0.25   | 1.00    |      |        |          |
| Life     | 0.25   | 0.25    | 1.00 |        |          |
| Health   | 0.25   | 0.25    | 0.25 | 1.00   |          |
| Non-life | 0.25   | 0.50    | 0.00 | 0.00   | 1.00     |



# **BSCR** calculation

| Description | The <i>BSCR</i> is the solvency capital requirement before any adjustments, combiing capital requirements for six major risk categories                                                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input       | SCR<br>mkt-capital requirement for market riskSCR<br>def-capital requirement for counterparty default riskSCR<br>life-capital requirement for life underwriting riskSCR<br>nl-capital requirement for non-life underwriting riskSCR<br>health<br>SCR<br>intangibles-capital requirement for health underwriting risk |
| Output      | This module delivers <i>BSCR</i> , the basic solvency capital requirement                                                                                                                                                                                                                                            |
| Calculation | $BSCR = \sqrt{\sum_{n} Corr_{ij} \times SCR_i \times SCR_j} + SCR_{intangibles}$                                                                                                                                                                                                                                     |
|             | where $Corr_{ij}$ are the entries of the correlation matrix, and $SCR_i$ , $SCR_j$ are the capital requirements for the individual risks according to the rows and columns of the correlation matrix.                                                                                                                |

the individual risks according to the rows and columns of the correlation matrix



# Non-life underwriting risk

| Description | Risk arising from non-life insurance obligations, in relation to the perils covered and the processes used<br>in the conduct of business                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input       | <ul> <li>NL<sub>pr</sub> - capital requirement for non-life premium and reserve risk</li> <li>NL<sub>lapse</sub> - capital requirement for non-life lapse risk</li> <li>NL<sub>CAT</sub> - capital requirement for non-life catastrophe risk</li> </ul> |
| Output      | $SCR_{nl}$ , the capital requirement for non-life underwriting risk                                                                                                                                                                                     |
| Calculation | $SCR_{nl} = \sqrt{\sum CorrNL_{r,c} \times NL_r \times NL_c}$                                                                                                                                                                                           |
|             | where $CorrNL_{r,c}$ are the entries of the correlation matrix, and $NL_r$ , $NL_c$ are the capital requirements                                                                                                                                        |

for the individual risks according to the rows and columns of the correlation matrix



# Correlation matrix for the non-life underwriting module

• The non-life underwriting module assumes linear correlations among the risks as follows:

| CorrNL              | $NL_{pr}$ | NL <sub>lapse</sub> | NL <sub>CAT</sub> |
|---------------------|-----------|---------------------|-------------------|
| NL <sub>pr</sub>    | 1.00      |                     |                   |
| NL <sub>lapse</sub> | 0.00      | 1.00                |                   |
| NL <sub>CAT</sub>   | 0.25      | 0.00                | 1.00              |



# Non-life premium and reserve submodule

| Description | Combination of the two main sources of non-life underwriting risk: premium risk and reserve risk                                                                                                                                                                                                                                              |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input       | <ul> <li>best estimate for claims outstanding for each segment s = 1,, 12</li> <li>estimate of premiums of segment s to be earned during the following 12 months</li> <li>premiums of segment s earned during the previous 12 months</li> <li>expected present value of earned premiums of segment s after the following 12 months</li> </ul> |  |
|             | $FP_{(future,s)}$ – expected present value of earned premiums of segment <i>s</i> where initial recognition is within 12 months but excluding premiums to be earned during the 12 months after recognition                                                                                                                                    |  |
| Output      | $NL_{pr}$ , the capital requirement for premium and reserve risk                                                                                                                                                                                                                                                                              |  |
| Calculation | $NL_{pr} = \left[\frac{exp\left(\Phi^{-1}(99.5\%)\sqrt{\ln(1+c^{prem,res^2})}\right)}{\sqrt{1+c^{prem,res^2}}} - 1\right]V \approx 3 \cdot \sigma \cdot V$                                                                                                                                                                                    |  |

where  $\sigma$  is the standard deviation for premium and reserve risk considering all segments and V is a volume measure determined with the input premiums and claims for all segments. A correlation matrix between segments and standard deviations per segment (gross and net of reinsurance) are prescribed.



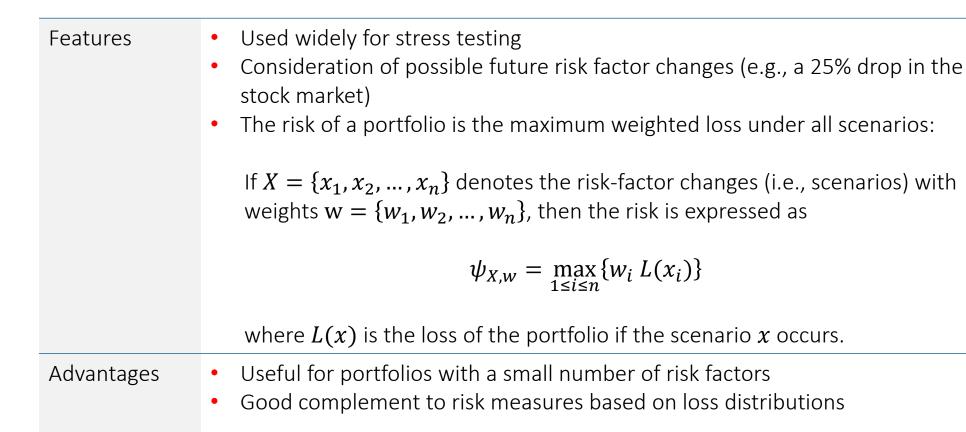
# Quantitative risk models





# 1- Notional amount approach

| Features      | <ul> <li>Oldest methodology, where risk is the weighted average of notional amounts and risk factors</li> <li>Still widely used <ul> <li>Basel Accords</li> <li>Certain modules and sub-modules of standard formula of Solvency II</li> </ul> </li> </ul> |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages    | • By far, the simplest approach                                                                                                                                                                                                                           |
| Disadvantages | <ul> <li>No distinction made between short and long positions</li> <li>No account for diversification effects</li> <li>Notional amounts may not necessarily represent economic values</li> </ul>                                                          |




# 2- Risk measures based on loss distributions

| Features      | <ul> <li>Modern risk measures are characteristics of the underlying loss distribution over some predetermined time horizon</li> <li>Examples: variance (or sd), VaR, TVaR</li> </ul>                             |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advantages    | <ul> <li>The notion of loss distributions is intuitively appealing</li> <li>If estimated properly, loss distributions reflect diversification effects</li> </ul>                                                 |  |
| Disadvantages | <ul> <li>Estimates of loss distributions are based on historical data</li> <li>It is difficult to estimate loss distributions accurately</li> <li>Risk dependencies are generally not well understood</li> </ul> |  |



# 3- Scenario-based risk measures



Disadvantages • Difficult to determine scenarios and weights



 $\operatorname{VaR}_{\alpha}[L] = \inf\{x \in \mathbb{R}: F_L(x) \ge \alpha\}$ , where L is a loss random variable with distribution function F and  $\alpha \in (0, 1)$ 

- VaR was popularized in 1994 by JP Morgan, *RiskMetrics* ("The Weatherstone 4:15 Report") and is by far the most widely used metric
- Examples:

| Distribution of L                                | Value-at-Risk                      |
|--------------------------------------------------|------------------------------------|
| $N(\mu, \sigma^2)$                               | $\mu + \sigma \Phi^{-1}(\alpha)$   |
| $t_v(\mu,\sigma^2)$                              | $\mu + \sigma t_v^{-1}(\alpha)$    |
| Exponential (scale = $\theta$ )                  | $-\theta \ln(1-\alpha)$            |
| Pareto II (scale = $\theta$ , shape = $\kappa$ ) | $\theta[(1-\alpha)^{-1/\kappa}-1]$ |



TVaR

 $\text{TVaR}_{\alpha}[L] = \frac{1}{1-\alpha} \int_{\alpha}^{1} \text{VaR}_{u}(L) du$ , where L is a loss rv with distribution function F,  $\text{E}[L] < \infty$  and  $\alpha \in (0, 1)$ 

- $TVaR_{\alpha}$  is the average  $VaR_{u}$  for all  $\geq \alpha$ , and is the second most widely used metric in practice
- $TVaR_{\alpha}$  looks further into the tail of the distribution
- Examples:

| Distribution of L                                | Tail Value at Risk                                                                                    |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $N(\mu,\sigma^2)$                                | $\mu + \sigma \frac{\varphi \left( \Phi^{-1}(\alpha) \right)}{1 - \alpha}$                            |
| $t_v(\mu, \sigma^2), v > 1$                      | $\mu + \sigma f_{t_v}(t_v^{-1}(\alpha)) \frac{(v + t_v^{-1}(\alpha)^2)}{(1 - \alpha)(v - 1)}$         |
| Exponential (scale = $\theta$ )                  | $-\theta \ln(1-\alpha) + \theta$                                                                      |
| Pareto II (scale = $\theta$ , shape = $\kappa$ ) | $\theta \left[ (1-\alpha)^{-1/\kappa} - 1 \right] + \frac{\theta (1-\alpha)^{-1/\kappa}}{\kappa - 1}$ |



#### BACKGROUND

- Paper by Artzner et al (1999)
- We will assume that risk measures  $\rho$  are defined on a linear space of random variables  $\mathcal{M}$  (including constants), that is,  $\rho: \mathcal{M} \to \mathbb{R}$
- Let be L a loss random variable



#### MONOTONICITY

$$L_1, L_2 \in \mathcal{M}, L_1 \leq L_2 \Rightarrow \rho(L_1) \leq \rho(L_2)$$

• Positions which lead to a higher loss in every state of the world, require more capital



#### TRANSLATION INVARIANCE

$$\rho(L+l) = \rho(L) + l, \ L \in \mathcal{M} \text{ and } l \in \mathbb{R}$$

- By adding *l* to a position with a loss *L*, we alter the capital requirement accordingly
- Alternatively, if  $\rho(L) > 0$  and  $l = -\rho(L)$ , then  $\rho(L \rho(L)) = \rho(L + l) = \rho(L) + l$ , so that adding  $\rho(L)$  to a position with losss L makes it acceptable



#### SUBADDITIVITY

# $\rho(L_1 + L_2) \le \rho(L_1) + \rho(L_2), \quad L_1, L_2 \in \mathcal{M} \text{ and } l \in \mathbb{R}$

- Reflects the idea of diversification
- VaR may be superadditive under some circumstances
  - The random variables have skewed distributions
  - The random variables have special dependence (for example, functional dependence)
  - The random variables have heavy-tailed distributions



#### **POSITIVE HOMOGENEITY**

$$\rho(\lambda L) = \lambda \rho(L), \quad L \in \mathcal{M} \text{ and } \lambda > 0$$

- Notice that if  $\lambda$  is large, then liquidity concerns arise, which leads to the concept of convex risk measures



# Coherent risk measures

#### DEFINITION

- A coherent risk measure is a risk measure ho that satisfies
  - monotonicity
  - translation invariance
  - subadditivity
  - positive homogeneity
- Subadditivity and positive homogeneity together can be thought of "convexity"

## $\rho(\lambda L_1 + (1 - \lambda)L_2) \le \lambda \rho(L_1) + (1 - \lambda)\rho(L_2), \quad L_1, L_2 \in \mathcal{M} \text{ and } \lambda \in [0:1]$



# The SCR under Solvency II

• Defined as the amount of capital that enables the insurer to meet its obligations over one year  $(\Delta t = 1)$  with probability  $\alpha = 0.995$  (that is, 199 out of 200 times)

Let  $V_t$  denote the capital. The insurance company determines the minimum amount of extra capital  $x_o$  to stay solvent at  $\Delta t$  with probability of at least  $\alpha = 0.995$ . Therefore:

$$x_{0} = \inf \{x \in \mathbb{R} : \Pr[V_{t+1} + x(1+r) \ge 0] \ge \alpha\}$$
  
= 
$$\inf \{x \in \mathbb{R} : \Pr\left[-\left(\frac{V_{t+1}}{1+r} - V_{t}\right) \le x + V_{t}\right] \ge \alpha\}$$
  
= 
$$\inf \{x \in \mathbb{R} : \Pr[L_{t+1} \le x + V_{t}] \ge \alpha\}$$
  
= 
$$\inf \{x \in \mathbb{R} : F(x+V_{t}) \ge \alpha\}$$
  
= 
$$\operatorname{VaR}_{\alpha}[L_{t+1}] - V_{t}$$

Therefore,  $SCR = V_t + x_0 = \text{VaR}_{\alpha}[L_{t+1}]$ 

The *SCR* is the sum of the capital available today and the capital required to stay solvent in  $\Delta t$  with 99.5% probability. If  $x_0 < 0$ , then the company has already enough capital.



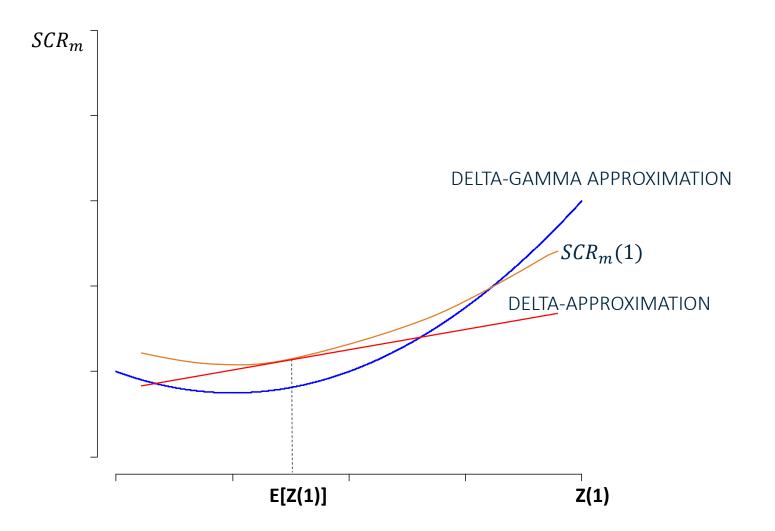
# Illustrative examples of a market risk model





# Model 1—the delta-gamma model

Suitable approximation of the required capital for certain market risks and mortality risks


- Let  $SCR_m$  be the capital requirement for market risk
- $SCR_m$  is a function of random risk factors  $Z_i(1)$
- $SCR_m = SCR_m(t; \mathbf{Z}(t)) = SCR_m(t; Z_1(t), \dots, Z_d(t))$
- $\mathbf{Z}(t) = (Z_1(t), Z_2(t), ..., Z_d(t))^T$
- Using the first two terms of the Taylor series:

$$SCR_m(\mathbf{Z}(1)) \coloneqq SCR_m(\mathbf{Z}(0)) + \sum_{i=1}^d \frac{\partial SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i} X_i + \frac{1}{2} \sum_{i=1}^d \sum_{k=1}^d \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i \partial \mathbf{z}_k} X_i X_k$$

$$\Delta SCR_m(1) \coloneqq \sum_{i=1}^d \frac{\partial SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i} X_i + \frac{1}{2} \sum_{i=1}^d \sum_{k=1}^d \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i \partial \mathbf{z}_k} X_i X_k = \boldsymbol{\delta}^T \mathbf{X} + \frac{1}{2} \mathbf{X}^T \boldsymbol{\Gamma} \mathbf{X}$$



# Delta-gamma approximation





# The random variable $\delta^T \mathbf{X} + \frac{1}{2} \mathbf{X}^T \Gamma \mathbf{X}$

- Through the "delta—gamma" we obtain a rv that models the underlying risk
- $\Delta SCR_m(1) \coloneqq \boldsymbol{\delta}^T \mathbf{X} + \frac{1}{2} \mathbf{X}^T \boldsymbol{\Gamma} \mathbf{X}$
- $\mathbf{X} = \mathbf{X}(1) = (X_1(1), X_2(1), \dots, X_d(1))^T$
- $\boldsymbol{\delta} = (\delta_1, \delta_2, \dots, \delta_d)^T$

• 
$$\delta_i = \frac{\partial SCR_m(\mathbf{Z}(0))}{\partial z_i}$$

- $\Gamma_{ik} = \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial z_i \partial z_k}$
- It is assumed that the risk factors follow a Normal distribution, therefore **X** is also Normal
- We obtain random vectors that follow a multivariate Normal distribution



# Estimation of the sensitivities

| Sensitivity                                                                                    | Estimator                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\delta_i = \frac{\partial SCR_m(\mathbf{Z}(0))}{\partial z_i}$                                | $\frac{SCR_m(\dots, z_i + h_i, \dots) - SCR_m(\dots, z_i - h_i, \dots)}{2h_i}$                                                                                            |
| $\Gamma_{ii} = \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial z_i^2}$                         | $\frac{SCR_m(\dots, z_i + h_i, \dots) - SCR_m(\dots, z_i, \dots)}{h_i^2} + \frac{SCR_m(\dots, z_i - h_i, \dots) - SCR_m(\dots, z_i, \dots)}{h_i^2}$                       |
| $\Gamma_{ik} = \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial z_i \partial z_k}$ $(i \neq k)$ | $\frac{SCR_m(, z_i + h_i,, z_k + h_k,) - SCR_m(, z_i + h_i,, z_k - h_k,)}{4h_i h_k} + \frac{SCR_m(, z_i - h_i,, z_k - h_k,) - SCR_m(, z_i - h_i,, z_k + h_k,)}{4h_i h_k}$ |



# Illustrative example

- Let's consider an endowment policy
  - Sum insured is USD 1m, term is 10 years
  - Portfolio of 100 insureds age 40
- Deterministic mortality assumptions, no lapses
- Spot rates: risk-free yield curve denominated in USD
- Invested assets denominated in USD, with market value of USD 105m
  - basket of stocks
  - zero-coupon bonds of 1—10 year terms



# Implementation

- 12 risk factors
  - 10 spot rates (1—10 years)
  - 1 stock index factor
  - 1 mortality factor
- **h** is the vector of changes in risk factors
- Let  $\boldsymbol{h} = (0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.10)^T$
- Let's use additive factors for the changes in spot rates, and multiplicative factors for the changes of stock prices and mortality rates (this is arbitrary!)



# Model output

From 
$$\Delta SCR_m(1) \coloneqq \sum_{i=1}^d \frac{\partial SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i} X_i + \frac{1}{2} \sum_{i=1}^d \sum_{k=1}^d \frac{\partial^2 SCR_m(\mathbf{Z}(0))}{\partial \mathbf{z}_i \partial \mathbf{z}_k} X_i X_k = \boldsymbol{\delta}^T \mathbf{X} + \frac{1}{2} \mathbf{X}^T \boldsymbol{\Gamma} \mathbf{X}$$

we generate  $n = 10^5$  realizations of a multivariate normal distribution, with the appropriate volatilities and correlation matrix.

The **R** implementation of the model yields:

| <pre>&gt; model_output</pre>        |          |         |          |
|-------------------------------------|----------|---------|----------|
|                                     | Monetary | amounts | in USD m |
| Net cash flows at t=0:              |          |         | 18.684   |
| Expected net cash flows at t=1:     |          |         | 19.919   |
| Risk capital for mortality risk:    |          |         | 0.140    |
| Risk capital for market risk:       |          |         | 24.002   |
| Diversification benefit:            |          |         | -1.773   |
| Solvency capital requirement (SCR): |          |         | 22.369   |
| Market value of assets (MVA):       |          |         | 105.000  |
| SCR as % of MVA:                    |          |         | 21.304   |



# Model 2—Market risk under the Standard Formula

# Market Interest rate Equity Property Spread Currency Concentration Illiquidity

#### DEFINITION

Risks that arise from adverse changes to a company's financial position due to changes of market prices of financial instruments

#### **METHODOLOGY**

- Modular approach
- Linear correlations used for the aggregation of individual components

$$SCR_m = \sqrt{\sum_i \sum_j Corr_{ij} SCR_i SCR_j}$$

| Corr          | Interest rate | Equity    | Property  | Spread    | Currency | Concentration |  |
|---------------|---------------|-----------|-----------|-----------|----------|---------------|--|
| Interest rate | 1             | 0   (0.5) | 0   (0.5) | 0   (0.5) | 0        | 0.25          |  |
| Equity        | 0   (0.5)     | 1         | 0.75      | 0.75      | 0        | 0.25          |  |
| Property      | 0   (0.5)     | 0.75      | 1         | 1         | 0        | 0.25          |  |
| Spread        | 0   (0.5)     | 0.75      | 0.5       | 1         | 1        | 0             |  |
| Currency      | 0             | 0         | 0         | 1         | 1        | 0             |  |
| Concentration | 0.25          | 0.25      | 0.25      | 0         | 0        | 1             |  |



### Interest rate sub-module

| Market                                                 | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Term | Incr. | Decr. |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|
|                                                        | Risks that arise from adverse changes to a company's financial position due to changes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       | 75%   |
| Interest                                               | interest rate curves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2    | 70%   | 65%   |
| rate                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3    | 64%   | 56%   |
| _ Equity                                               | METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4    | 59%   | 50%   |
| Property                                               | Prescribed instantaneous shock factors to interest rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       | 46%   |
|                                                        | <ul> <li>The risk is measured as impact on net value of assets when rates go up or down,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    | 52%   | 42%   |
| Spread                                                 | including adjusments for future discretionary bonuses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 49%   | 39%   |
| Currency                                               | $SCR = BSCR + Adjustment = BSCR - min(BSCR - BSCR^{a}, FDB)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8    | 47%   | 36%   |
|                                                        | $\left( A \right) \left( A$ | 9    | 44%   | 33%   |
| Con-<br>centration                                     | $\Delta NAV_{up}  \text{if } \max(\Delta NAV_{up}^{u}, \Delta NAV_{down}^{u}) = \Delta NAV_{up}^{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10   | 42%   | 31%   |
| Illiquidity                                            | $BSCR = \begin{cases} \Delta NAV_{up} & \text{if } max(\Delta NAV_{up}^{a}, \Delta NAV_{down}^{a}) = \Delta NAV_{up}^{a} \\ \Delta NAV_{down} & \text{if } max(\Delta NAV_{up}^{a}, \Delta NAV_{down}^{a}) = \Delta NAV_{down}^{a} \\ 0 & \text{otherwise} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11   | 39%   | 30%   |
|                                                        | ( 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12   | 37%   | 29%   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13   | 35%   | 28%   |
| $BSCR^a = max(\Delta NAV^a_{up}, \Delta NAV^a_{down})$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14   | 34%   | 28%   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15   | 33%   | 27%   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |       |

::::

::::

::::



## Illustrative example

- A company issues an investment contract with an annual discretionary bonus
  - no mortality risk
  - assets are invested at the risk-free rate
  - liabilities are replicated using risk-free bonds
- Cash flow estimates are:

| year | E[risk.free] | shocked.rate | gtd.rate | zero.bonds | pv.assets | repl.cf | stat.reserve | bonus | CF.ben | pv.liab |                   |
|------|--------------|--------------|----------|------------|-----------|---------|--------------|-------|--------|---------|-------------------|
| 0    |              |              |          |            |           |         |              |       |        |         |                   |
| 1    | 0.243%       | 0.243%       | 0.5%     | 1,500      | 4,068     | 1,000   | 3,938        | 0     | 1,000  | 3,938   | scenario          |
| 2    | 0.671%       | 0.671%       | 0.5%     | 1,000      | 2,571     | 900     | 2,958        | 3     | 903    | 2,941   | BE                |
| 3    | 1.095%       | 1.095%       | 0.5%     | 500        | 1,580     | 600     | 2,072        | 10    | 610    | 2,046   |                   |
| 4    | 1.428%       | 1.428%       | 0.5%     | 500        | 1,090     | 500     | 1,483        | 12    | 512    | 1,448   | mitigating effect |
| 5    | 1.684%       | 1.684%       | 0.5%     | 250        | 607       | 400     | 990          | 10    | 410    | 953     | n/a               |
| 6    | 1.880%       | 1.880%       | 0.5%     | 250        | 369       | 300     | 595          | 7     | 307    | 564     |                   |
| 7    | 2.020%       | 2.020%       | 0.5%     | 100        | 136       | 200     | 298          | 4     | 204    | 277     | NAV               |
| 8    | 2.113%       | 2.113%       | 0.5%     | 50         | 45        | 100     | 100          | 1     | 101    | 91      | 129               |



# Changes in net asset values ( $\Delta NAV_{up}$ , $\Delta NAV_{down}$ )

| year | E[risk.free] | shocked.rate | gtd.rate | zero.bonds | pv.assets | repl.cf | stat.reserve | bonus | CF.ben | pv.liab |                   |
|------|--------------|--------------|----------|------------|-----------|---------|--------------|-------|--------|---------|-------------------|
| 0    |              |              |          |            |           |         |              |       |        |         |                   |
| 1    | 0.243%       | 0.413%       | 0.5%     | 1,500      | 4,019     | 1,000   | 3,938        | 0     | 1,000  | 3,875   | scenario          |
| 2    | 0.671%       | 1.141%       | 0.5%     | 1,000      | 2,525     | 900     | 2,958        | 3     | 903    | 2,879   | UP                |
| 3    | 1.095%       | 1.796%       | 0.5%     | 500        | 1,540     | 600     | 2,072        | 10    | 610    | 1,990   |                   |
| 4    | 1.428%       | 2.271%       | 0.5%     | 500        | 1,057     | 500     | 1,483        | 12    | 512    | 1,400   | mitigating effect |
| 5    | 1.684%       | 2.610%       | 0.5%     | 250        | 584       | 400     | 990          | 10    | 410    | 916     | OFF               |
| 6    | 1.880%       | 2.858%       | 0.5%     | 250        | 353       | 300     | 595          | 7     | 307    | 538     |                   |
| 7    | 2.020%       | 3.010%       | 0.5%     | 100        | 129       | 200     | 298          | 4     | 204    | 263     | NAV               |
| 8    | 2.113%       | 3.106%       | 0.5%     | 50         | 42        | 100     | 100          | 1     | 101    | 86      | 143               |

| year | E[risk.free] | shocked.rate | gtd.rate | zero.bonds | pv.assets | repl.cf | stat.reserve | bonus | CF.ben | pv.liab |                   |
|------|--------------|--------------|----------|------------|-----------|---------|--------------|-------|--------|---------|-------------------|
| 0    |              |              |          |            |           |         |              |       |        |         |                   |
| 1    | 0.243%       | 0.000%       | 0.5%     | 1,500      | 4,134     | 1,000   | 3,938        | 0     | 1,000  | 4,022   | scenario          |
| 2    | 0.671%       | 0.000%       | 0.5%     | 1,000      | 2,634     | 900     | 2,958        | 3     | 903    | 3,022   | DOWN              |
| 3    | 1.095%       | 0.095%       | 0.5%     | 500        | 1,634     | 600     | 2,072        | 10    | 610    | 2,119   |                   |
| 4    | 1.428%       | 0.428%       | 0.5%     | 500        | 1,134     | 500     | 1,483        | 12    | 512    | 1,510   | mitigating effect |
| 5    | 1.684%       | 0.684%       | 0.5%     | 250        | 637       | 400     | 990          | 10    | 410    | 1,001   | OFF               |
| 6    | 1.880%       | 0.880%       | 0.5%     | 250        | 390       | 300     | 595          | 7     | 307    | 596     |                   |
| 7    | 2.020%       | 1.020%       | 0.5%     | 100        | 145       | 200     | 298          | 4     | 204    | 295     | NAV               |
| 8    | 2.113%       | 1.113%       | 0.5%     | 50         | 48        | 100     | 100          | 1     | 101    | 97      | 111               |



# Changes in adjusted net asset values ( $\Delta NAV_{up}^{a}, \Delta NAV_{down}^{a}$ )

| year | E[risk.free] | shocked.rate | gtd.rate | zero.bonds | pv.assets | repl.cf | stat.reserve | bonus | CF.ben | pv.liab |                   |
|------|--------------|--------------|----------|------------|-----------|---------|--------------|-------|--------|---------|-------------------|
| 0    |              |              |          |            |           |         |              |       |        |         |                   |
| 1    | 0.243%       | 0.413%       | 0.5%     | 1,500      | 4,019     | 1,000   | 3,938        | 0     | 1,000  | 3,926   | scenario          |
| 2    | 0.671%       | 1.141%       | 0.5%     | 1,000      | 2,525     | 900     | 2,958        | 16    | 916    | 2,930   | UP                |
| 3    | 1.095%       | 1.796%       | 0.5%     | 500        | 1,540     | 600     | 2,072        | 23    | 623    | 2,029   |                   |
| 4    | 1.428%       | 2.271%       | 0.5%     | 500        | 1,057     | 500     | 1,483        | 23    | 523    | 1,426   | mitigating effect |
| 5    | 1.684%       | 2.610%       | 0.5%     | 250        | 584       | 400     | 990          | 18    | 418    | 931     | ON                |
| 6    | 1.880%       | 2.858%       | 0.5%     | 250        | 353       | 300     | 595          | 12    | 312    | 546     |                   |
| 7    | 2.020%       | 3.010%       | 0.5%     | 100        | 129       | 200     | 298          | 7     | 207    | 266     | NAV               |
| 8    | 2.113%       | 3.106%       | 0.5%     | 50         | 42        | 100     | 100          | 2     | 102    | 86      | 92                |

| year | E[risk.free] | shocked.rate | gtd.rate | zero.bonds | pv.assets | repl.cf | stat.reserve | bonus | CF.ben | pv.liab |                   |
|------|--------------|--------------|----------|------------|-----------|---------|--------------|-------|--------|---------|-------------------|
| 0    |              |              |          |            |           |         |              |       |        |         |                   |
| 1    | 0.243%       | 0.000%       | 0.5%     | 1,500      | 4,134     | 1,000   | 3,938        | 0     | 1,000  | 3,980   | scenario          |
| 2    | 0.671%       | 0.000%       | 0.5%     | 1,000      | 2,634     | 900     | 2,958        | 0     | 900    | 2,980   | DOWN              |
| 3    | 1.095%       | 0.095%       | 0.5%     | 500        | 1,634     | 600     | 2,072        | 0     | 600    | 2,080   |                   |
| 4    | 1.428%       | 0.428%       | 0.5%     | 500        | 1,134     | 500     | 1,483        | 0     | 500    | 1,481   | mitigating effect |
| 5    | 1.684%       | 0.684%       | 0.5%     | 250        | 637       | 400     | 990          | 1     | 401    | 983     | ON                |
| 6    | 1.880%       | 0.880%       | 0.5%     | 250        | 390       | 300     | 595          | 2     | 302    | 587     |                   |
| 7    | 2.020%       | 1.020%       | 0.5%     | 100        | 145       | 200     | 298          | 1     | 201    | 291     | NAV               |
| 8    | 2.113%       | 1.113%       | 0.5%     | 50         | 48        | 100     | 100          | 0     | 100    | 96      | 154               |



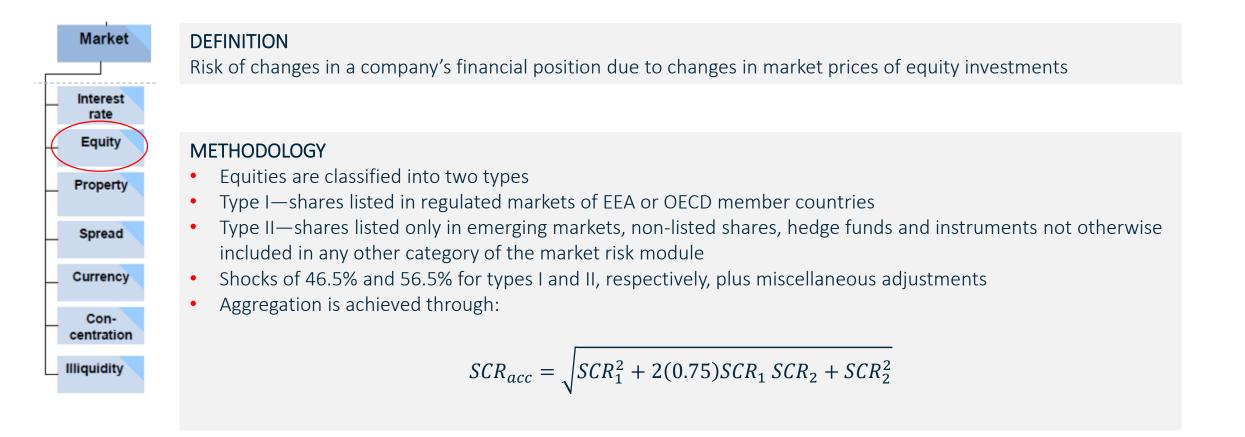
## Calculations

From the tables, we populate the formulas:

$$\Delta NAV_{up} = -\min(0, NAV_{up} - NAV_{be}) = -\min(0, 143 - 129) = 0$$
  

$$\Delta NAV_{down} = -\min(0, NAV_{down} - NAV_{be}) = -\min(0, 111 - 129) = 18$$
  

$$\Delta NAV_{up}^{a} = -\min(0, NAV_{up}^{a} - NAV_{be}) = -\min(0, 92 - 129) = 37$$
  


$$\Delta NAV_{down}^{a} = -\min(0, NAV_{down}^{a} - NAV_{be}) = -\min(0, 154 - 129) = 0$$
  
BSRC = 0  
BSRC<sup>a</sup> = 37

FDB = 45

 $SCR = BSCR - min(BSCR - BSCR^{a}, FDB) = 0 - min(0 - 37, 35) = 37$ 



## Equity risk sub-module





# Illustrative example of a non-life risk model



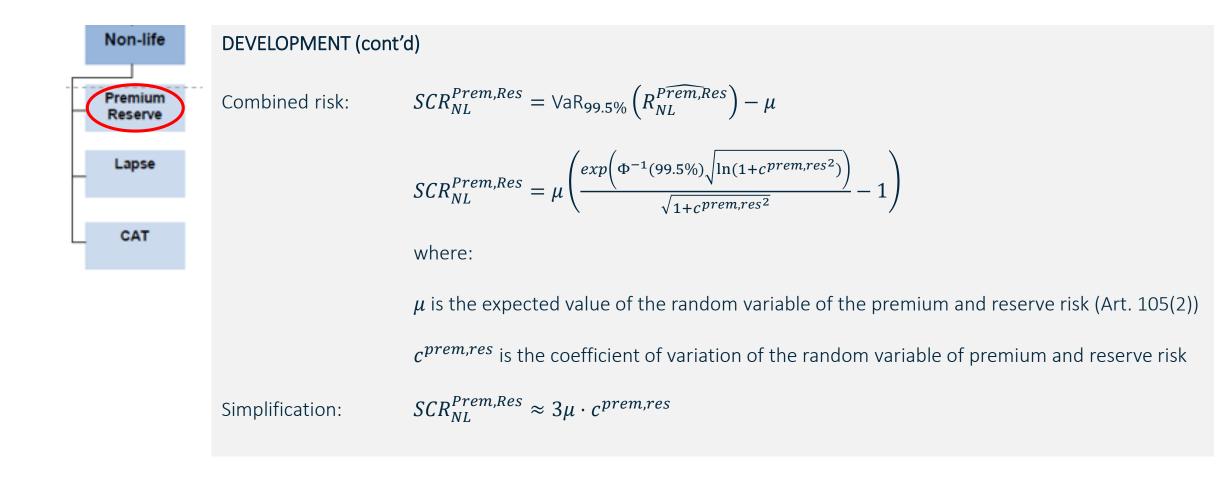


## Premium and reserve risk

| Non-life<br>Premium<br>Reserve<br>Lapse | <ul> <li>DEFINITION</li> <li>Risks that arise from:</li> <li>insufficient premiums to cover obligations to policyholders</li> <li>larger-than-expected number of claims</li> <li>larger-than-expected amount of claims</li> <li>insufficient reserves to cover obligations to policyholders</li> </ul> |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAT                                     | METHODOLOGY                                                                                                                                                                                                                                                                                            |

The combined premium and reserve risk follows a log-normal distribution

$$SCR_{NL}^{Prem,Res} = \mu \left( \frac{exp\left(\Phi^{-1}(99.5\%)\sqrt{\ln(1+c^{prem,res^2})}\right)}{\sqrt{1+c^{prem,res^2}}} - 1 \right)$$




## Premium and reserve risk

| Non-life           | DEVELOPMENT   |                                                                                                                                       |                        |
|--------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Premium<br>Reserve | Premium risk: | $R_{NL}^{Prem} = \text{claims} + \text{expenses} - P$                                                                                 |                        |
| Lapse              | Reserve risk: | $R_{NL}^{Res} = \text{claims} + \text{expenses} + \text{reserve}^{final} - \text{reserve}^{initial}$                                  |                        |
|                    | Estimation:   | $R_{NL}^{\widehat{Prem,Res}} = R_{NL}^{Prem} + P + R_{NL}^{Res} + reserve^{initial}$                                                  |                        |
| CAT                | Modeling:     | $\ln(R_{NL}^{\widehat{prem,Res}}) \sim \mathcal{N}\left(\ln \mu - \frac{1}{2}\ln(1 + c^{prem,res^2}), \ln(1 + c^{prem,res^2})\right)$ | )                      |
|                    |               | $SCR_{NL}^{Prem,Res} = VaR_{99.5\%} \left( R_{NL}^{\widehat{Prem,Res}} \right) - P - reserve^{initial}$                               |                        |
|                    | Lemma:        | If $X \sim \mathcal{LN}$ with parameters $m$ and $s$ then $\operatorname{VaR}_{\alpha}(X) = \exp(m + s\Phi^{-1}(a))$                  | x))                    |
|                    |               |                                                                                                                                       | continued on next page |



## Premium and reserve risk





## Lapse risk

| Premium |
|---------|
|         |
| Reserve |
| Lapse   |
| CAT     |

#### DEFINITION

Risk of massive cancelation of business that has a negative impact on reserves. This risk is only relevant if, for the determination of reserves, premium payments after the valuation year are being considered.

#### METHODOLOGY

A scenario approach is followed:

 $SCR_{nl}^{c} = \max(E[NAV_{0\%}^{c}] - E[NAV_{50\%}^{c}], E[NAV_{0\%}^{c}] - E[NAV_{-50\%}^{c}])$ 

For cash flow projections, the following assumptions are made:

- lapse rate is 50% higher than expected
- lapse rate is as expected
- lapse rate is 50% lower than expected



## Catastrophe risk

| Non-life<br>Premium | DEFINITION<br>Risk of financial impact due to natural and man-made catastrophes.                                                                                                                                               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reserve             |                                                                                                                                                                                                                                |
| CAT                 | <ul> <li>METHODOLOGY</li> <li>A factor approach is followed:</li> <li>Let P<sub>i</sub> be the gross premium for each line of business (i = 1,, 13)</li> <li>Let c<sub>i</sub> be gross factors prescribed by EIOPA</li> </ul> |
|                     | $SCR_{nl}^{cat} = \left[ \left( \sqrt{\sum_{i \in \{1,2,3,5\}} (c_i P_i)^2} + c_{11} P_{11} \right)^2 + \sum_{i \in \{4,7,8,9,10,12\}} (c_i P_i)^2 + (c_6 P_6 + c_{13} P_{13})^2 \right]^{1/2}$                                |



## Lines of business prescribed by EIOPA and *c*-factors

| Events                                     | Lines of business affected              | Gross Factor c <sub>t</sub> |
|--------------------------------------------|-----------------------------------------|-----------------------------|
| Storm                                      | Fire and property; Motor, other classes | 175%                        |
| Flood                                      | Fire and property; Motor, other classes | 113%                        |
| Earthquake                                 | Fire and property; Motor, other classes | 120%                        |
| Hail                                       | Motor, other classes                    | 30%                         |
| Major fires, explosions                    | Fire and property                       | 175%                        |
| Major MAT disaster                         | МАТ                                     | 100%                        |
| Major motor vehicle<br>liability disasters | Motor vehicle liability                 | 40%                         |
| Major third party<br>liability disaster    | Third party liability                   | 85%                         |
| Credit                                     | Credit                                  | 139%                        |
| Miscellaneous                              | Miscellaneous                           | 40%                         |
| NPL Property                               | NPL Property                            | 250%                        |
| NPL MAT                                    | NPL MAT                                 | 250%                        |
| NPL Casualty                               | NPL Casualty                            | 250%                        |



### Combined non-life underwriting capital requirement

$$SCR_{nl} = \left[ \left( SCR_{nl}^{pr} \right)^2 + \left( SCR_{nl}^{c} \right)^2 + \left( SCR_{nl}^{cat} \right)^2 + 2corrSCR_{nl}^{cat} \sqrt{\left( SCR_{nl}^{pr} \right)^2 + \left( SCR_{nl}^{c} \right)^2} \right]^{1/2} \right]^{1/2}$$

where  $corrSCR_{nl}^{cat} = 0.25$  is the coefficient of correlation between the combined premium, reserve and lapse risks, and the catastrophe risk.



## Illustrative example

#### GENERAL DATA

|                          | Fire & | Fire & property damage |       |   | Third | -party liabili | ty    | Business interruption |       |       |
|--------------------------|--------|------------------------|-------|---|-------|----------------|-------|-----------------------|-------|-------|
|                          | 2017   | 2018                   | 2019E |   | 2017  | 2018           | 2019E | 2017                  | 2018  | 2019E |
| Gross written premium    | 10,000 | 12,000                 | -     | 1 | L,000 | 1,200          | _     | 2,000                 | 2,500 | -     |
| Unearned premium reserve | 1,000  | 1,150                  | 1,200 |   | 100   | 135            | 140   | 275                   | 350   | 400   |
| Outstanding loss reserve | -      | 4,000                  | -     |   | -     | 500            | -     | -                     | 750   | -     |
| Quota-share cession      |        | 20%                    | -     |   | -     | 25%            | _     | -                     | 25%   | -     |
| Average claim            |        | 100                    | -     |   | -     | 75             | -     | -                     | 150   | -     |
| Coefficient of variation |        | 0.50                   | -     |   | -     | 0.60           | _     | -                     | 0.75  | -     |

#### **RESERVE RUN-OFF PATTERNS**

|                        | year  |       |       |       |       |  |  |  |
|------------------------|-------|-------|-------|-------|-------|--|--|--|
|                        | 1     | 2     | 3     | 4     | 5     |  |  |  |
| Fire & property damage | 0.588 | 0.353 | 0.059 | -     | -     |  |  |  |
| Third-party liability  | 0.357 | 0.321 | 0.214 | 0.071 | 0.038 |  |  |  |
| Business interruption  | 0.714 | 0.286 | -     | -     | -     |  |  |  |



## Model output

The **R** implementation of this model produced the following output:

| > model_ouput              |                |
|----------------------------|----------------|
|                            | Amounts in USD |
| Premium and reserve risk:  | 21799          |
| Lapse risk:                | 0              |
| Catastrophe risk:          | 10150          |
| Diversification benefit:   | -5703          |
| Combined risk:             | 26246          |
| Gross written premium:     | 15700          |
| Net earned premium (NEP):  | 12270          |
| Combined risk as % of NEP: | 214            |





Carlos Arocha ca@ArochaAndAssociates.ch

